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Abstract 

The distributed data problern, is characterized by the desire to  bring together se- 
mantically related data from syntactically unrelated portions of a term. Two strategic 
combinators, dynamic and transient, are introduced in the context of a classical strate- 
gic programming framework. The impact of the resulting system on instances of the 
distributed data problem is then explored. 
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1 Introduction 

Existing transformation techniques have encountered stumbling blocks when dealing with a 
certain class of manipulations that frequently arise in the context of program transformation. 
We introduce the term distributed data problem to characterize the desire to bring together 
semantically related terms from syntactically unrelated portions of a term. 

Given a term t ,  let Dt denote the set of all subterms o f t .  The notion of being seman- 
tically related within the context o f t  can now be abstractly defined as follows: 

1. Define DP = Dt x Dt x ... x Dt as the n-ary cross-product of Dt. 

2. Define a relation SR(t)  C 0; such that an n-tuple of terms d; E DP is semantically 
related iff dy E SR( t ) .  

While the idea of semantically related terms motivates the research in this paper, a more 
detailed definition of the relation is not essential to the concepts presented. Therefore, we 
use a few examples to give the reader an informal idea of what we mean by semantically 
related. 

1. When performing type checking, the type information found at the point of declaration 
of a variable and the occurrences of that variable within a program are semantically 
related. 

2. When performing function inlining, the bindings that exist between the formal and 
actual parameters of a function are semantically related. 

3. When performing resolution of Java classfiles, the entries in the constant pool are 
semantically related to the bytecodes which index them. 

We define terms dg E Dr to be syntactically unrelated from the perspective of the 
structure o f t  if one or more recursive traversals o f t  or one of its subterms are required 
in order to construct d;. That is, dg cannot be directly captured and manipulated within a 
primitive conditional rewrite rule. A conditional rewrite rule is considered to be primitive 
if none of its components (eg., where clauses, local evaluations, etc.) perform any recursive 
traversals. In this context, the recursive traversal is seen as the mechanism by which the 
niatching/unification capabilities within a strategic programming system are extended (e.g., 
a subterm can be retrieved from or carried to points arbitrarily deep within the term t ) .  

The reader should suspect that the definition of what is syntactically unrelated is de- 
pendent upon the matching/unification capabilities of the strategic programrning system 
S as well as the class of term structures under consideration. For example, a system St 
in which AC unification [16][15] is supported will consider a different set of terms to be 
syntactically unrelated when compared to a system S” in which only first-order unification 
is supported. We define S U ( S , t )  to be the relation consisting of all d; E DP that are syn- 
tactically unrelated in t with respect to the matching/unification capabilities of the system 
S. 
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Given tlic: above definitions of semantically related and syntactically unrelated, we define 
the distributed data problem for a given system S and term t as the following relation: 

distributed-data-problem(S, t )  EE SR(t)  n S U ( S ,  t )  

Term normalization, strategy instantiation, and recursive traversal are the primary 
mechanisms used to solve the distributed data problem in a strategic framework. Ab- 
stractly speaking, normalization, alters the subterm relation. Is generally acconiplished by 
the application of a collection of rewrite rules whose goal is to place the term into some 
canonical form. For example, a term of the form add(add( l,add(2,3)),add(4,5)) may be 
normalized to yield add( l,add(2,add(3,add(4,5)))). Notice that in the normalized form the 
first two constants (e.g., in this case 1 and 2) will always be at a fixed depth in the term. 
Canonical forms may be naturally occuring within the term structure, or the term structure 
can be extended so they may arise. The restructuring of terms may bring appropriate sub- 
terms within reach of unification/matching. Terms that were syntactically unrelated may 
thus become syntactically related after normalization. 

Strategy instantiation, on the other hand. provides the means for binding specific values 
(e.g., terms) to variables within a stragegy which then can be passed to a traversal. There 
are two mechanisnis by which external values can flow into a strategy: parameterization and 
free-variables. In parameterization values flow into the strategy through formal parameters. 
In the free-variable approach, a strategy is defined (possibly anonymous) containing free- 
variables which are bound in an enclosing scope (e.g., another strategy). 

Recursive traversal provides the mechanism for transferring data in an instantiated 
strategy to a particular term or set of terms. Success is achieved when normalization 
makes it possible to construct a term traversal in which a parameterized strategy is capable 
of bringing together semantically related terms. When this has been accomplished, the 
particular instance of the distributed data problem is considered solved. 

Instances of the distributed data problem arise in numerous settings iricluding type- 
checking, program slicing, partial evaluation, variable renaming, function inlining, as well as 
constant pool riormalization in Java classfiles. In many cases, simple instantiated strategies 
needed to accomplish a desired task can easily be written (by hand) for a fixed context or 
problem. Unfortunately, the overly specific nature of such hand crafted solutions does not 
directly provide an automated solution to the more general problem. The transformational 
ideas presented in this paper provide a mechanism by which appropriate strategies can be 
automatically generated. 

1.1 Contribution 

In this paper, we explore how the combinators of a traditional first-order strategic pro- 
gramming system such as those described in [23] can be lifted to a higher-order setting. We 
refer to higher-order strategies as dynamics because of their ability to dynamically create 
first-order strategies which are then applied to terms. 
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In this higher-order framework we also introduce a combinator called a transient. The 
transient combinator restricts a strategy so that it may be applied at most once. For 
example, let s denote an arbitrary strategy. The expression transient(s) denotes a strategy 
in which s can only be applied once. Given a strategic mindset, a transient strategy can 
be understood as a strategy that transforms itself into the strategy skip after its first 
successful application to a term. Here the strategy skip is similar to the identity strategy id 
in the sense that its application to any term will leave the term unchanged. The difference 
between skip and id is that skip never applies while id always applies. This distinction 
between sk ip  and i d  impacts the semantic foundations upon which strategic systems are 
built. Systems such as Stratego[33][35] arid Elan[2][3] are failure-based in the sense that 
they are built upon the notion that if a strategy cannot be applied to a term, then the 
resulting value is fail. However, in order for skip to have the effect we desire, a more 
suitable semantic foundation might be one that is non-failure based. That is, where a term 
is left unchanged if a strategy cannot be applied to it. 

While the notion of a transient may seem quite simple at first glance, a subtle interplay 
between dynamics and transients lead to interesting and elegant solutions to problems 
involving term structures whose characteristics have been considered undesirable in the 
context of a more traditional rewriting system. 

This article formally integrates dynamics and transients in a strategic programming 
framework. The resulting language is called TL. The expressiveness of TL is demonstrated 
by solving various instances of the distributed data problem. 

1.2 Outline 

Section 2 looks at the distributed data problem in more detail and gives a small survey of 
the existing mechanisms used for solving the distributed data problem. In Section 3 table 
normalization, is introduced as a running example. Section 4 describes TL, a higher-order 
strategic programming langauge featuring dynamic and transient combinators. Section 
5 gives several examples of how dynamic and transient combinators can be used to solve 
general instances of the distributed data problem such as set union and intersection. Section 
6 revisits the table normalization problem in a real world setting namely, constant pool 
normalization for the Java Virtual Machine (JVM). Field distribution and method table 
construction for the JVM is also discussed. Section 7 gives a brief overview of the HATS 
transformation system and discusses the extent to which the ideas presented in this paper 
have been implemented. Section 8 discusses related work including Stratego, the p-calculus, 
ASF+SDF, the S; calculus, Elan, Strafunski[21], and Maude. Section 9 indicates some areas 
for future work, and Section 10 concludes. 

2 Motivation 

Existing strategic paradigms generally support tuples, lists, and the ability to bring one or 
more terms within the scope of a recursive traversal as the primary mechanisms for solving 

10 



the distributed data problem. Conceptually speaking, the recursive distribution of data 
involves four distinct activities: 

1. T h e  creat ion  of data.  Data must be found or created and represented in a suitable 
forni. 

2. T h e  binding of data.  Data must be bound to variables. 

3. T h e  d is t r ibu t ion  of data.  Recursive traversals must be employed or developed for 
transporting data to terms. 

4. T h e  use of data.  The data is used at some point to extend, alter, or create one or 
more terms. 

2.1 Phase I: The Creation of Data 

In the first phase, one or more values are created. Typically this is accomplished by the 
application of an accumulating strategy (i.e., an accumulator) to an appropriate (sub)term. 
An accuniulator may collect a fixed number of values (e.g., a term or a tuple) or a varying 
number of values (e.g., a list). When using accumulators, it is generally useful to have the 
ability to produce initial values such as the empty tuple or the empty list. For example, 
the Sly calculus [22] provides a conibinator specifically for building the empty tuple. 

It is worth noting that accumulated values are usually simple term structures such as 
tuples or flat lists. Furthermore, lists are usually honiogeneous in the sense that all the 
elements of a list are of the same type. To our knowledge, there is not an example in the 
literature where an accuniulated value is substantially more complex than a list (e.g., a 
heterogeneous list of lists). The relatively simple top-level structure of acciirniilated values 
distinguishes them from classes of terms that are more structurally complex such as abstract 
syntax trees or parse trees which are typically used to describe program structures. Another 
noteworthy characteristic of strategies playing the role of an accumulator is that they are 
not type preserving. For instance, an accumulator typically yields an output that is of type 
list or tuple regardless of the type of the terni to which it is applied. 

In many strategic programming frameworks the types of accuniiilated values are extra- 
grammatical in the sense that they are not native to the abstract syntax or context-free 
grammar describing the domain of discourse. Instead, the definitions of these auz i l iary  
s t ruc tures  can be seen as extensions to the term-language which are either imported, as 
is the case in ELAN [a], or provided as universal primitives by the underlying strategic 
system, as is the case in Stratego [34]. The Sk calculus [22] as well as ASF+SDF [4] 
implicitly support tuples as an auxiliary structure. However in both the Sly calculus as well 
as ASF+SDF, users must explicitly define list constructors and constants (e.g., cons and 
nil). 

In practice, the use of the auxiliary structures described in this section is widespread 
in strategic programming frameworks. Such structures occur in virtually every strategic 
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program solving a non-trivial problem. As a result, auxiliary structures, even when im- 
plicitly defined by the system, are generally given first-class citizenship within the strategic 
framework. For example, strategies may be applied to such values directly and congruence 
relations may be defined using their structure. 

2.2 

There are several approaches for binding a variable to an accumulated value. In one ap- 
proach, a strategy is constructed where a desired accumulated value is denoted by a free 
variable. This strategy is then embedded in a scope in which this free variable is explicitly 
bound to the desired accumulated value. In Stratego [34], this can be accomplished by (1) 
binding an accumulated value to a variable using a where clause, (2) defining an anonymous 
strategy within the scope of the where clause, and (3) then passing this anonymous strategy 
to a recursive traversal function. Stratego also provides a special kind of strategy called 
a match strategy that has the form ?t. Match strategies can be quite effectively used as 
mechanism for binding certain types of acciimiilated values. In [35], contextual rules are 
introduced as a notation for describing distributed data. Here a context can be specified by 
an expression of the form t[z] which denotes a single occurrence of the term z within the 
term t .  We will look more closely at an example involving contextual rules in Section 2.5.1. 

Strategy parameterization is also a mechanism that can be used for binding variables 
to accumulated values. The problem introduced here is how to integrate/reconcile the 
Parameterization of s with recursive traversals applying s. An extension to ASF+SDF [4] 
requires that parameters be explicitly passed to traversal functions. Here traversal functions 
are essentially a set of rewrite rules annotated with an appropriate predefined traversal. The 
traversal mechanism takes care of properly passing the parameter(s) in rules applying to 
subterms. In this framework, con,ditions can be used in a fashion similar to the where 
clauses in Stratego to bind accumulated values to variables. One drawback of explicit rule 
parameterization is that general purpose (unparameterized) form of the rules is not readily 
accessible. 

In ELAN[2][13], local evaluations can be used to bind accumulated values. Rules can 
then be specifically parameterized (a non-generic approach) and an evaluation mechanism 
(e.g., nondeterministic choice, backtracking, normalization, etc.) can be used to bring the 
parameterized data to the appropriate (sub) term. 

Phase 11: The Binding of Data 

2.3 Phase 111: The Distribution of Data 

In this phase a strategy must be developed that enables a strategy containing a variable 
bound to an accumulated value to be transfered to appropriate subterms. Ultimately, this 
transfer of data will involve a recursive traversal which may be generic (e.g., topdown, 
botttomup, etc.) or problem dependent. 
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2.4 Phase IV: The Use of Data 

An extraction and/or conversion function (e.g., some form of lookup, zip, etc.) is typically 
developed to enable the data stored in auxiliary structures to be used to effect a change 
in one or more terms. In some cases, the function is trivial being little more than the 
identity function. However, if the accumulated value constitutes an aggregation (e.g., a list 
of values), then this structure will need to be traversed in some manner in order to extract 
the appropriate value. 

2.5 Examples 

This section gives a brief overview and analysis of some examples of the distributed data 
problem and solutions that have been published in the literature. 

2.5.1 Type Checking 

In [35], a strategic program is developed for the purpose of type checking a small imperative 
language named Pico. In Pico, program blocks consist of a declaration list followed by a 
statement list. 

Block : List(DecZ) t Stat  -+ Program 

The basic idea of the type checker is to rewrite all variables with their type and then 
use basic type rules to simplify program constructs. For example, a type rule is given for 
simplifying an expression of the form Integer + Integer to Integer.  Similarly, a type rule 
is given for simplifying an assignment of the form Integer := Integer to Skip.  In this 
approach, the statement list Stat will be type correct if it can be rewritten to Skip.  

Before type rules can be applied, a preprocessing step must occur where variable oc- 
currences within the statement list are rewritten to their declared types. The type of a 
variable can be found in the declaration list of a block (e.g., List(DecZ)). We would like to 
point out the fact that the declaration list of a Block can have an arbitrary length as can 
the statement list. Thus this preprocessing step is a classic example of the distributed data 
problem which is solved in this example through the use of contextual rules. 

In particular, the following contextual rule is used to distribute the type data associated 
with variables found in declarations over statements in s that use the variable: 

InlTp: Block(ds[Decl(Id(x),t)], s[Id(x)]) + Block(ds, s[Tp(t)]) 

Here the context ds[DecZ( ld(z ) ,  t ) ]  denotes an occurrence of the declaration DecZ( ld(z ) ,  t )  
within the declaration list ds. Similarly, the context s [ Id ( z ) ]  denotes a use of the variable 
I d ( z )  within the statement sequence s. Contexts provide an elegant abstraction for solv- 
ing this type of distributed data problem. Furthermore, it turns out that contexts can 
be implemented by the primitive strategic constructs found in Stratego (e.g., match and 
build strategies, where clauses, and term traversals). The implementation basically involves 
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nested traversal in a fashion similar to how o~ic  niight use nested for-loops to implement, a 
bubble-sort in an imperative language. In this case, the outermost traversal walks across 
the declaration list ds. When a declaration DecZ(ld(z),  t )  is encountered a traversal of the 
statement sequence s is initiated with the goal of replacing a single occurrence of I d ( z )  
with T p ( t ) .  If no occurrence of I d ( z )  is found, then the strategy fails at which point the 
next declaration in ds is tried. The exhaustive application of this strategy will replace all 
variables in s with their corresponding types. 

The given iniplementation of contextual rules in Stratego seem to be well suited for 
specifying a one-to-many rerwriting relationship. The outer traversal defines the one and 
the inner traversal defines the many. However, in order for this to work it should only be 
possible to transforni each of the terms in the set of the many a finite number of times (e.g., 
one time). If this is not the case, the exhaustive application of such nested of traversals 
will result in an infinite rewriting sequence. It is worth noting that the nesting of traversals 
works because the single/finite application property realizes a counter or marker of sorts at 
the term-level. The transient combinator presented in this article lifts this concept to the 
strategy-level. 

The notion of contexts provides a capability that is similar to the dynamic conibinator 
introduced in this article. In fact, one could think of dynamic combinators as some sort of 
cross between contexts and the scoped dynamic rewrite rules discussed in the next example. 

- 

2.5.2 Variable Renaming 

In [33] bound variable renaming problem is considered. A basic (conventional) algorithm 
is outlined where a substitution list is used to keep track of the appropriate substitutions 
needed for renaming. When a construct binding the variable id1 is encountered, a new 
(i.e., fresh) variable id2 is generated and the tuple (idl,id2) is added to the substitution 
list. Then, when a variable use is encountered, that variable is looked up (using a lookup 
function) in the substitution list and the appropriate substitution is made. 

This basic algorithm is adapted to a generic framework in which it is possible to dy- 
naniically create labeled rules. Dynamic rules are rules whose variables can be instantiated 
during the traversal of a term and whose instantiated forms can be added to the rulebase 
during execution. Abstractly, this rulebase can be seen as a set of labeled rule definitions 
whose cardinality and membership function can change dynamically. A scoping construct 
is then introduced in order to manage the rule definitions in this set (hence the title of the 
paper: Scoped Dynamic Rewrite Rules). Specifically, the scoping construct defines when 
rule definitions should be removed from the set (in contrast to the instantiations resulting 
from term traversal which indicate when a rule instance should be added to the set). The 
idea of dynamically creating rule sets is similar to what we propose in this article. 

Given a framework in which scoped dynamic rewrite rules is supported, the variable 
renaming problem can be solved as follows. First, a labeled rule is created defining variable 
renaming in general. The body of this rule is essentially of the form: id1 + id2. It is 
important to note that such a rule, when dynamically instantiated, stores the information 
needed in order to accomplish variable renaming and simultaneously obviates the need for 
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the lookup function used in the basic algorithm discussed previously. The lookup function 
is no longer necessary because its effect is accomplished by rule base application - a primi- 
tive operation in the strategic framework. Thus, dynaniic rule instantiations subsunie the 
need for (1) tuple creation and (2) addition of tuples to substitution lists, while rule base 
application subsumes the need for ( 3 )  substitution list lookup. And lastly, what may be 
even more important to note that in this context, dynaniically created rules obviate the 
need of term-language extensions such as tuples and lists! 

2.5.3 General Replacements 

In [4] traversal functions are presented as an extension of ASFSSDF rewrite rules. The 
capabilities of traversal functions is demonstrated by showing how various types of term 
replacements might be accomplished. One replacement involves incrementing each integer 
term by a term denoting a constant integer value. A second example has a higher-order 
flavor and involves replacing all occurrences of the function symbol g by the function symbol 
i within a term t. 

The integer increment is accomplished through a rewrite rule (i.e., a transformer) incp 
having two parameters. The first parameter is instantiated by the term t to which the rule 
is to be applied while the second parameter holds the constant integer value c which is to 
be used to increment every integer subterm in t .  The traversal function is then used to 
transport c to every subterm in t. The incp equation applies (i.e., the increment occurs) 
only when the first argument of i m p  is a term of type integer. The following example, 
taken from the paper, operationally demonstrates how incp can be used to increment every 
integer subterm in f(g(1,2),3) by the constant 7: 

The second example involves the substitution of one function symbol for another. In this 
example, the new symbol is not stored as a parameter to an equation, but rather embedded 
in the equation itself. The transformer f repl is used to define the replacement as follows: 

frepl(g(Tl,T2)) = i(Tl,T2) 

Notice that f repl takes only one argument, the term t to which it is applied, while incp 
takes two arguments. 

2.5.4 Closure Conversion 

In [34] an example is given of a closure conversion for a functional language. The goal of 
closure conversion is to turn the free variables of a nested function into explicit parameters 
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of that function. Within a function definition. a variable z is considered free if (1) z is used 
within the definition, and (2) IC is not declared locally. 

In the solution presented, an accumulating strategy is used to traverse a term denoting 
a function definition and collect all free variables. The free variables encountered are placed 
into a list and this list is then used to extend the formal and actual parameter lists of the 
function. 

In the abstract syntax for the functional language given, a variable use (free or otherwise) 
is denoted by a term of the form Var(id,tgpe). In contrast, the elements of the accumulated 
free variable list are tuples of the form (id,type),  a term structure not explicitly defined 
by the abstract syntax. When appending the free variable list to the actual parameter 
lists of the function the free variable list is first converted into a list of tuples of the form 
Vur(id,  type).  

2.6 Questions and Concerns 

The examples above raise some interesting questions. For example, must the structure of 
data in an accumulated list always be simple? Should the manipulation of an accumulated 
value always be simple? Continuing on with this line of thought, does it make sense to 
consider the creation of lists whose elements are arbitrarily complex terms (e.g., a list of 
lists, a list of lists of lists)? When should data defining a desired change be passed as a 
parameter (incp) and when should it be embedded within a rule or equation ( f r e p l ) ?  

Strategic systems generally provide some sort of typing as a byproduct of their computa- 
tional framework. For example, a rewrite rule of the form r : f ( t 1 ,  ..., t,) + f ( t i ,  ..., t k )  can 
only be successfully applied to terms of the form f(z1,  ..., z,). Given this, the constructor 
f can be viewed as a type constraint and the rule r can be seen as being type preserving. 
In [4], traversal functions are classified as belonging to one of three possible types: (1) 
the sort-preserving transformer,  (2) the accumulator that maps all types to a single type 
and in this sense can be thought of as being type unifying[22], and (3) the accumulating 
t rans former  that is a mixture of a transformer and an accumulator. 

In a strategic setting, parameterization encourages the use of accumulators, especially 
when the goal of a strategy is to return an aggregation (e.g., a list) of values. Accumulators 
are type unifying not type preserving and typically rely on term-language extensions such 
as tuples or lists - extensions which are essentially typeless. Programming in such a frame- 
work may permit various kinds of errors that would otherwise not be possible or would be 
detected by a type system. The value of strong typing is recognized across the spectrum 
of computational frameworks from object oriented languages to functional languages. The 
strategic programniing community also recognizes the value of strong typing. One of the 
contributions of the 5’4 calculus [22] is that it enables a strategic framework to use non-type 
preserving strategies such as accumulators while nevertheless reaping the benefits offered 
by type systems. 

Accumulators, in the process of producing a value will typically strip constructors from a 
term with the goal of producing a term consiting only of essential information. However, the 
constructors that are present in terms oftentimes can provide valuable information. The loss 
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of information resulting from flattening these structures in to lists niay present liniitations 
for the use of ac:cumulated values. Generally speaking, as the structural information in an 
aggregation diminishes, the sophistication of the extraction function will need to increase. 

3 Running Example 

This article developes a strategic framework where the bindings possible within higher-order 
strategies are used place of the parameter passing found in first-order strategic frameworks. 
This provides a different framework for describing strategic computations in which solutions 
to a nuniber of strategic problems can be elegantly expressed. 

In this section, we consider a basic unlabeled first-order rewrite rule to have the form: 

lhs -+ rhs 

where lhs and rhs denote ternis taken from a suitable term language T ( F , X )  in which 
terms are constructed using the function symbols in F and variables in X .  A rewrite rule 
can be labeled by prefixing it with a label followed by a colon as follows: 

r : lhs -+ rhs 

In a strategic setting, a rewrite rule may also be referred to as a strategy. 
The expression [Ihs -+ rhs](t)  denotes the application of the strategy Zhs -+ rhs to 

the term t. We will only consider the application of strategies to ground terms (i.e., terms 
containing no variable symbols). Given this restriction, rule application can be accomplished 
by matching lhs with t and then using the bindings resulting from the match in order to 
construct an instance of the term rhs which then replaces t .  An interesting question arises 
concerning the result of rule application in the case where lhs and t cannot be matched. 
In a pure rewriting framework, the term t is left unchanged. In a strategic framework the 
result is typically a value denoting failure. 

We consider a second-order rewrite rule to have the form: 

lhs;? -+ lhsl -+ rhsl 

where the + symbol is right-associative. The application of the second order strategy 
lhs2 -+ lhsl + rhsl to a term t will yield a first-order strategy of the form lhsi -+ rhsi 
where lhsi and rhsi are instances respectively of lhsl and rhsl as determined by variable 
bindings resulting from the (successful) match between lhsz and t. 

Given this notation, let us consider the second-order rewrite rule s2 shown below: 
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Informally speaking, the rule s2 can be seen as a template (of sorts) for relating infor- 
mation between the terms k and i in a specific context. The application [s2](g(1,  b ) )  yields 
the first-order strategy g ( j ,  1 )  + g ( j ,  b ) ,  and the application [g ( j ,  1) + g ( j ,  b)](g(2,1)) yields 
g(2, b) .  In this instance, s2 provides a vehicle for transferring data from g(1,  b) to g ( 2 , l ) .  

3.1 The Table Normalization Problem 

The table normalization problem involves the removal of indirection within the entries of 
a two-columned table. In this context, normalization is interesting because constant pool 
normalization within the Java Virtual Machine (JVM) can be seen as an instance of this 
problem (mod some real-world details). In Section 6.1 the table normalization problem is 
revisited in the context of the JVM. 

Suppose we are given a term representing a 2-column table whose entries are of the form 
(index, data) where index is an integer describing the position of the entry in the table and 
datu is value that may either be an index or a character. Given an entry ( i , d )  if d is of 
type character, then we say that the entry ( i , d )  is resolved. Otherwise, d is of type index 
and the entry is unresolved. 

Definition 1 Given a table t ,  a resolution step for  t involves two entries and is defined 
as follows: If ( i ,  j )  and ( j ,  d )  denote two entries in our table, then the entry ( i ,  j )  may be 
resolved to ( i ,  d )  yielding a new table t’ such that (Vk : k # i + t [ k ]  = t’[k]) A t’[i] = ( i ,  d )  

Note that the definition of a resolution step places no constraints on the ordering re- 
lationship between i and j .  In particular, i may be positionally less-than or greater-than 
j -  

Definition 2 A table t is normalized by appling a sequence of resolution steps until no 
further resolution is possible. 

A table having n entries is well-formed with respect to resolution step sequences if 
any entry can be (fully) resolved in fewer than n steps. In other words, a table is well- 
formed if all of its resolution step sequences are cycle-free. Given this constraint, we claim 
(without proof) that for well-formed tables resolution step sequences are confluent. That 
is, regardless of the order in which they are applied, a sequence of resolution steps will ( 1 )  
always terminate and ( 2 )  always reach the same normal form. 

Let us consider constructing a set of rewrite rules capable of normalizing the table shown 
in Figure 3.1. The most direct solution would be obtained by simply writing the following 
set of labeled rewrite rules: 

An interesting characteristic of the rules given in Figure 3.1 is that they do not contain 
any variables. We will refer to rules that do not contain variables as ground rules. We 
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Index Index or Character 

1 

1 1 1  5 I 

a 

1 2 1  b I 

2 

1 5 1  3 

b 

Figure 1: An example of a well-formed table 

r 4 : 4 + 2  
r.5 : 5 + 3 

Figure 2: A ground rule-set encoding resolution steps for the table in Figure 1 

will also use the term resolution-set to refer to a set of ground rewrite rules capable of 
nornializing a given table. For example, the ground rules in Figure 3.1, when considered 
collectively, describe a resolution-set for the table given in Figure 3.1. 

Note that if the application of the resolution-set in Figure 3.1 can be controlled by a 
strategy so that rules are only applied to data values (i.e., the second element of a tuple), 
then the rule set will correctly normalize the table given in Figure 3.1. Constructing a 
strategy that restricts the application of the above rules in this fashion is straightforward. 
The specific details of this type of strategy are unimportant in the context of this discussion 
and are therefore omitted. What is important, however, is the basic (strategic) approach 
taken to solve the table normalization problem. 

The fixpoint application of the resolution-set shown in Figure 3.1 to the table in Figure 
3.1 yields the table in Figure 3.1. 

A drawback of the approach described thus far is that it is highly problem specific. A 

Figure 3: The normal form of the table in Figure 1 
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resolution-set must be explicitly constnictcd by hand for each table under consideration. 
Of course, a more generic strategy would be would bo one that could normalize an arbitrary 
well-formed table. In this case, our strategic line of thinking could be captured most directly 
if our framework has the ability to dynamically construct resolution-sets. In a higher-order 
framework this can be achieved. This type of solution should also be expressible using 
the scoped dynamic rules of Stratgeo. Otherwise, in a first-order framework resolution-sets 
must be simulated through the techniques described in Section 2. 

3.1.1 A Higher-Order Solution 

We first explore the dynamic construction of resolution-sets in a functional setting and then 
consider a generalization to a strategic framework. In a functional framework one could 
develop a higher-order function make-resolution-set that accepts a well-formed table t as 
its input parameter and produces a resolution-set rs  as its output. Typically, rs would be 
a list of function values [ T I ,  7-2, ..., r,] where list elements are given in any order and where 
each function value ri realizes a specific ground resolution rule as dictated/defined by t .  
Collectively, the list of functions in rs would be obtained by traversing the table t .  

After constructing rs, a higher-order function such as fold could then be used together 
with an apply function @ enabling the rules in rs to be sequentially applied to t .  The 
resulting expression would be: 

foldl  @ t rs where @ : term t rule + term 

It should be noted that in order for foldl to have the desired effect, rule application 
should not result in failure. That is, given a rule ri = lhs -+ rhs, the rule application 
ri ( t )  should either return t if ri does not apply a suitable instance of rhs if ri does apply. 
If one makes this assumption about rules, then the fixpoint of the sequential application 
resulting from f old1 will yield the normal form of t. Since table normalization is confluent, 
the application of T S  to the table t can proceed without giving much thought regarding the 
order in which rules are applied or even the order of the rules in the resolution-set list. 

It is worth noting that the dynamic scoping construct of Stratego [33] could be used to 
realize this type of a solution. Though we have not explicitly programmed such a solution 
in Stratego, the sketch of such a strategy would be as follows. First develop a named 
(generic) rule r : index -+ data. Then enclose this rule in a dynamic scope in which the 
table t is traversed and r is applied to appropriate points in t. The dynamic aspect of 
the dynamic scoping construct will cause instantiations of r (e.g., what we have referred 
to as r1,r2, ..., r5 in Figure 3.1) to be added to the rulebase. The resulting rulebase can 
then be used to resolve the table after which the dynamic scope is exited and the rules are 
removed from the rulebase. The limitation here is the structure and application semantics 
of the rulebase neither of which is under the control of the user. A reasonable model of the 
rulebase is that it is a strategy having a nondeterministic (or possibly ordered) application 
semantics. For example, a dynamically created rulebase might be viewed as a strategy of 
the form T I  + 7-2 + ... + T, where ri are instantiations of r. This type of a rulebase is most 

20 



I 

appropriate for constructing a set of rewrite rules for confluent and terminating systems 
such as table normalization. This approach encounters problerns when dealing with non- 
confluent nonterminating systems . What we propose in this paper is a way of dynamically 
constructing various types of strategies (e.g., strategies in which rules may be sequentially 
or conditionally composed and the order in which rules appear in the strategy is explicitly 
under the control of a traversal function). The resulting strategies can be seen as being 
similar to rulebases with the exception that the user has explicit control over their structure 
and application semantics. 

3.1.2 A First-Order Solution 

In a functional framework, table normalization could also be achieved without resorting to 
higher-order functions. A first-order approach would bypass the creation of the (interme- 
diate) resolution-set altogether, favoring instead a more direct resolution of table entries. 
Because resolution steps may involve table entries both above and below the entry being 
resolved, a value (e.g., either the table itself or an accumulated values such as list of tuples) 
would need to be introduced for the purpose of providing information about the entries 
of the entire table. This value could then be passed as a parameter or embedded within 
a strategy and a lookup function could then be used to access the inforniation needed to 
perform a resolution step on a table entry. The contextual rules of Stratego discussed in 
Section 2.5.1 could also be employed as a realization of this kind of idea. 

Whether a first-order or higher-order approach is taken, every solution to the table 
resolution problem niust ultimately deal with the problem of (1) finding a term d of type 
data, (2) using the information in the table t in order to perform a resolution step on d, and 
(3) computing the fixpoint of the individual resolution steps. An interesting characteristic 
of the higher-order approach described is that the lookup function is not explicit, but in 
some sense ernbedded in the semantics of application (i.e., the fold operation). 

3.2 

In the higher-order functional solution to the table normalization problem, a list T S  = 
[ T I ,  ~ 2 ,  ..., rn] of rules was created and applied to a term t using a fold operation on lists 
together with a function that applies rules to terms. In a strategic framework, such a 
computation sequence could most directly be described by the following strategy in which 
the rules ~i are sequentially composed. 

Generalization to a Higher-Order Strategic Framework 

However, since the rule set is confluent and terminating, the computation could alternately 
be expressed as a strategy in which the rules ri are coniposed using a nondeterministic 
choice combinator. 

Tsnondeterministic TI + ~2 + ... + ~n 
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Here the application of r1 + 7-2 + ... + r, to a term t will nondeterministically select an ri 
which can be successfully applied to t. One could also express the rule set as strategy in 
which the rules ri are composed using deterministic (left-biased) choice. 

TSdeterministir = 7-1 +> 7'2 +> ... +> r,  

Here the application of r1 +> r2 +> ... +> r,  to a term t will select the leftmost ri which 
can be successfully applied to t .  

Though interesting, the utility obtained by providing a strategic framework with the 
ability to dynamically construct strategies like the variations of rs  shown above is somewhat 
limited. The reason for this is that strategic systems typically deal with non-confluent non- 
terminating systems and dynamic aggregations like rs  oftentimes do not provide enough 
control over the application of the rules contained within them. However, such dynamically 
constructed aggregations become significantly more interesting if one can exercise just a 
little more control over their composition. In particular, suppose that the following is 
permitted: 

1. The full power of traversal (e.g., bottom-up left-to-right, top-down right-to-left, or a 
selective traversal, etc.) may be used to construct the aggregation. 

2. It is possible to specify which binary combinator (e.g., a sequential composition, de- 
terministic choice, user defined) should be used to compose the individual strategies 
in the aggregation. 

3. One can uniformly apply a strategic combinator to each rule in the aggregation. In 
particular, we introduce a combinator called transient that restricts any strategy s 
to which it is applied so that s can only be applied at most once to a term during the 
lifetime of the strategy. 

At first glance, the proposed extensions may not appear significant. However, the control 
provided by the transient combinator in this framework should not be underestimated. 

4 Model 

In this section we develop a language for strategic programming called TL. Here our focus 
is primarily on semantic and theoretical considerations and not necessarily on practical 
concerns such as the efficient implementation of constructs. 

4.1 Trees 

We are interested in the manipulation of terms corresponding to derivation sequences defined 
with respect to a given context-free grammar. Let G = ( N ,  T ,  P, S) denote a context-free 
grammar where N is the set of nonterminals, T is the set of terminals, P is the set of 
productions, and S is the start symbol. Given an arbitrary symbol B E N and a string of 
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Figure 4: A BNF describing a restricted set of mathematical expressions 

symbols a = X1X2 ... Xm, where for all 1 5 a 5 7n : Xi E N U T ,  we say B derives Q iff 
the productions in P can be used to expand B to Q. Traditionally, the expression B & a 
is used to denote that B can derive a in zero or more expansion steps. Similarly, one can 
write B + a to denote a derivation consisting of one or more expansion steps. 

In our strategic framework, we write B[[a’]] to denote an instance of the derivation 
B + a whose resulting value is a parse tree having B as its dominating symbol. We refer 
to expressions of the form B[[a’]] as parse expressions. In the parse expression B[[a’]] the 
string a’ is an instance of a because nonterminal symbols in a’ are constrained through 
the use of subscripts. We call subscripted nonterminal symbols schem,a variables or simply 
variables for short. We also consider a lone schema variable to be a parse expression (e.g., 
Elt). An important thing to note about schema variables is that they are typed variables 
and as such many only be bound to values (i.e., parse trees) derivable from corresponding 
nonterminal symbols. 

Within a given scope all occurrences of schema variables having the same subscript 
denote the same variable. The purpose of subscripts on schema variables is to enable gram- 
mar derivations to be restricted with respect to one or more equality-oriented constraints. 
The difference between a nonterrninal B and a schema variable Bi is that B is traditionally 
viewed as a set (or syntactic category) while Bi is a typed variable quantified over the syn- 
tactic category defined by the nonterminal B. Consider a BNF grammar shown in Figure 
4.1 describing a restricted set of mathematical expressions: 

Given this grammar, the parse expression E[[Tl +T1]] denotes the set of all mathematical 
expressions e where e contains a single occurrence of the terminal symbol + and where 
the expressions on the left and right-hand side of the + operator are syntactically equal. 
Contrast this to the syntactic category [[T + TI] which imposes no such equality constraint 
on the derivations associated with either occurrence of T .  In practice, equality constraints 
can easily be removed from a parse expression by requiring that all schema variables have 
unique subscripts. For example, the parse expression E[[Tl + T2]] is equivalent to the 
syntactic category [[T + T I ] .  

When the dominating symbol and specific structure of a parse expression is unimportant 
it will be denoted by variables of the form t ,  t l ,  ... or variables of the form tree, treel ,  treez, 
and so on. Parse expressions containing no schema variables are called ground and parse 
expressions containing one or more schema variables are called non-ground. 

Within the context of rewriting or strategic programming, trees as described here can 

+ 

+ 
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Figure 5: The semantics of sigma distribution 

and generally are viewed as terms. When the distinction is unimportant, we will refer to 
trees and terms interchangeably. However, we would like to point out that our reason 
for defining trees rather than terms stems from the fact that our conceptual framework 
as well as our tools are based on tree representations as defined above and not the term 
representations that are more commonly found in the literature. 

At some level of abstraction the distinction between trees and terms blurs. However, 
there are also important distinctions between them. For example, the internal structure of 
a tree can be automatically completed using a parser while the internal structure of a term, 
in its purest sense, cannot. Automatic completion of trees assures that trees will always 
be well-formed entities as defined by a given grammar. In contrast, strategic frameworks 
based on terms typically require the internal structure of terms to be made explicit (by the 
user) within strategy and rule definitions. 

We feel that term completion is a significant enough distinction to justify our departure 
from the traditional term nomenclature and representation. Tree representations have other 
advantages over terms, and the reverse is also true, but such discussion lies beyond the scope 
of this paper. 

4.2 Match Equations 

Matching is a fundamental operation in our framework. We will used the symbol << adapted 
from the pcalculus [SI to denote first-order matching modulo an empty equational theory. 
Let t 2  denote a (ground) tree and let tl denote a parse expression which may contain one 
or more schema variables. The equation tl << t 2  is a match equation. Equivalently we may 
also write t 2  >> tl .  A substitution o binding schema variables to ground parse expressions 
is a solution to tl << t 2  if a(t1) = t 2  with = denoting a boolean valued test for syntactic 
equality. Our matching framework is strictly first-order in the sense that we do not consider 
parse expressions that make use of variables whose values are quantified over arbitrary sets 
of dominating symbols (e.g., X E { A ,  B,  C} in an expression of the form X [ [ a ’ ] ]  etc.). 

A match expression is a boolean expression involving one or more match equations. 
Match expressions may be constructed using the standard boolean operators: A, V, 1. A 
substitution u is a solution to a match expression m iff o(m) evaluates to true using the 
standard semantics for boolean operators in conjunction with the semantics defined in 
Figure 4.2. 
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4.3 Conditional Rewrite Rules 

We assume a first-order conditional rewrite rule to be a scoped directed equality having the 
form: 

lhs + rhs if E 

where lhs and rhs are parse expressions and E is a match expression. In this framework, 
E plays a role similar to the local evaluation construct found in ELAN [2] and the where 
construct found in Stratego [33]. We restrict the free (schema) variables in rhs to be a 
subset of the free (schema) variables occurring in lhs and E.  

The directed equality lhs -+ rhs if E is scoped because in this context (and not beyond), 
identical variables must be bound to the same value. 

For notational convenience, we will use the term lhs’ to denote the portion of a con- 
ditional rewrite rule consisting of 1h.s together with the condition E. More specifically 
one can think of lhs’ as a tuple of the from (lhs, E ) .  Thus we will write lhs‘ -+ rhs as a 
shorthand for lhs + rhs if E. 

The main points to note regarding the definition of conditional rewrite rules are: 

1. A conditional rewrite rule defines a scope boundary. 

2. Within E ,  match equations make matching operations explicit. 

3. Rewrite conditions (e.g., normal form constraints, etc.) can be expressed in E. 

4. lhs’ -+ rhs is a shorthand for lhs -+ rhs if E provided lhs’ = (lhs, E ) .  

4.4 The Syntax of TL Strategies 

In this section, we define a term language for strategic expressions. In the definition below, 
we use some of the combinators introduced in [23] with some slight modifications and we 
also add a few combinators of our own. 

1. A parse expression A[[a’]] is a strategy of order 0. Conceptually, we distinguish a 
parse expression as a trivial or constant strategy. All other strategies are non-trivial. 

2. Let sn, s;” and s; denote strategies of order n, then: 

skipn is a strategy of order n, provided n > 0. 

transient(?) is a strategy of order n, provided n > 0. 
lhs’ -+ s” is a (non-trivial) strategy of order n + 1, provided n 2 0. 

Sequential Composition: s;“; sy is a strategy of order n, provided n > 0. 
Conditional Composition: s;LIs?j is a strategy of order n, provided n > 0. 
One-layer First-Order Generic Traversal Combinators: 
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i. alZ-thread(sn) is a strategy provided n = 1. 
ii. all-broadcast(sn) is a strategy provided n = 1. 

(g) One-layer Higher-Order Generic Traversal Combinators: 

i. all-thread-left(sn, T ,  e) is a strategy where T is a unary strategy combinator 
(e.g., transient) and @ is a left-associative binary strategy combinator (e.g., 
sequential composition, conditional composition) , provided n > 0 . 

ii. all-thread-right(sn, T ,  e) is a strategy where T is a unary strategy combina- 
tor (e.g. , transient) and @ is a right-associative binary strategy conbinator 
(e.g., sequential composition, conditional composition), provided n > 0 . 

iii. all-broadcast(sn, T ,  @) is a strategy where T is a unary strategy combinator 
(e.g., transient) and @ is a binary strategy combinator, provided n > 0. 

3 .  No other expressions are strategies. 

4.5 The Semantics of TL 

In the previous sections we have defined the following: 

1. The syntax and semantics of match equations and match expressions. 

2. The syntax of conditional first-order rewrite rules. 

3 .  The syntax of strategic expressions in general. 

We are now in a position to define what it means to apply a strategy to a term. We 
will do this in two stages. First we define the application semantics of conditional rewrite 
rules in a non-failure based manner. Then we define the semantics of strategy application 
in general (i.e., the application of composite strategies), including the application of higher- 
order strategies to terms. 

4.5.1 

The application of a conditional rewrite rule R to a tree t is expressed as R(t) where R 
is either an abstraction of a rewrite rule (i.e., a name) or an anonymous rule value e.g., 
lhs' -+ sn. When expressing rule and strategy application, we adopt a curried notation 
in the style of ML where application is a left-associative implicit operator and parenthesis 
are used to override precedence or may be optionally included to enhance readability. For 
example, R t denotes the application of R to t and has the same meaning as R(t). 

We say that 
lhs' -+ sn applies to the term t if lhs  << t A E holds. The notion of "lhs << t A E holds" is 
so central to our framework, that we define this concept explicitly. 

The Application of Conditional Rewrite Rules 

Let us consider the application (lhs' + sn) t where lhs' is ( l h s , E ) .  

Definition 3 eval ( lhs ' , t ,a )  i s  a predicate that when given an lhs' whose value i s  ( lhs ,  E )  
and a tree t ,  will evaluate to true i f la(t << lhs A E )  evaluates to  true. 
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With this definition we are now in a position to define the non-failure based application 
of a higher-order conditional rewrite rule. 

Definition 4 (lhs’ + sn)  t = I t if 130 : evul(lhs’, t ,  a )  A n = 0 
.skipn ” . f  ” 1 3 0  : eval(lhs‘, t ,  a )  A n > 0 

It should be noted that the definition given for rule application is non-failure based. This 
means that if a first-order rule fails to apply to a term t then t will be returned unchanged. 
If a higher-order rule fails to apply then .skipn will be returned where n is the order of the 
right-hand side of the rule. This is in sharp contrast to systems such as Stratego, Elan, and 
the Sly calculus where the failure of a rule to apply will yield a distinguished value fail. 

4.5.2 

The notion of choosing a strategy from a collection of strategies is central to any strategic 
programming framework. Elan [2] provides the operators de and dk which respectively 
denote don’t cure choose and don’t know choose and enables strategies to be created in 
which the choice of which strategy to apply is left unspecified. 

Stratego[34] and the 
Sh calculus [22], define biased choice in ternis of a non-deterministic choice combinator, a 
negation-by-failure combinator, and a sequential composition combinator. For example, let 
the expression S I +  s2 denote a strategy that will non-deterministically apply either s1 or s2. 

Let SI ;  s2 denote the sequential composition of s1 and sg (apply .SI followed by s2), and let 
1 s1 denote a strategy that succeeds only if SI fails. Given these combinators, left-biased 
choice (first try s1 and if that fails try s2) can be defined by the strategy S I +  (-SI; s g )  and 
right-biased choice can be defined by the strategy ( l s g ;  SI)  + s g .  

An issue that every strategic framework supporting a choice combinator must address 
is how to “observe’? when a strategy has been successfully applied. Such an observation 
is essential in order to effectively navigate strategies involving choice combinators. In a 
failure based framework, the observation is straightforward since the value fail explicitly 
indicates when a rule application has failed. However, in a non-failure based framework 
such as ours, this observation becomes a bit more involved. One way to solve the problem 
is to introduce an observer predicate observe(s, t)  that evaluates to true iff the strategy s 
applies to the term t .  Note that in addition to being computationally expensive? simply 
performing an equality comparison on the terms t and s ( t )  is not correct (e.g., if t # s ( t )  
then the application succeeded) since such a test would not be able to distinguish between 
the failure or success of an application of an identity-like rule (e.g., the application of ( b  + b )  
to the term b) .  

In our framework, the presence of the transient combinator requires the notion of obser- 
vation to be further refined. The nature of this refinement is dependent upon the semantics 

Choice and Observing the Application of a Strategy 

A biased choice combinator is also common in the literature. 
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given to the transient combinator. There are several possible definitions from which one 
could choose. Informally stated, we have choosen to define the transient combinator in the 
following way: 

Given a strategic expression of the form transient(s)  we refer to s as the con- 
tents of the transient. A transient is a strategic combinator that restricts the 
application of its contents so that it may be applied at most once. The only 
exception to this rule is that a transient may not observe the application of the 
contents of another (nested) transient. 

The “at most once” property characterizes the transient combinator and motivates the 
introduction of sk ip  into our strategic framework. We define skip as a stratgegy whose 
application never succeeds’. Operationally, we define a strategy of the form t rans ien t (s )  
as a strategy that reduces to the strategy sk ip  if the application of its contents (i.e., the 
strategy s )  can be observed. 

The definition of transient also introduces the need for two distinct observer predicates. 
The first predicate observechoice defines the semantics of applies from the perspective of the 
choice combinator. The second predicate observetransient defines the semantics of applies 
from the perspective of the transient combinator. 

The following example illustrates the difference between the observer predicates: 

transient( transient(s l )  1.2) t 

For the purposes of this discussion, let us assume that s1 and s2 are first-order strate- 
gies and that s1 can be applied to the term t yielding t’. The choice combinator I must 
be able to observe that s1 has been successfully applied to t in order to prevent an at- 
tempt to apply s2 to t. Furthermore, we would like the successful application of s1 to t 
to reduce t r a n s i e n t ( t r a n s i e n t ( s ~ )  Is2) to transient(skipls2) which can further be reduced 
to transient(s2).  In particular, we do not want to permit the observation of the suc- 
cessful application of SI to t to reach the outermost transient, since the entire strategy 
transient(trarLsient(sl) Is2) would then reduce to skip. Therefore, it is essential that the 
outermost transient not be permitted to observe the application of s1 to t .  

It turns out that the definitions of observechoice and observetransient are identical for 
all strategies and strategy combinators except for the definition of the transient combina- 
tor. Thus in order to avoid duplication, Figure 4.5.2 formally presents the semantics of a 
single predicate called observex rather than presenting separate tables for the predicates 
observechoice and observet,,,,~,,t. As a result, the definitinon of observex can be viewed 
as being somewhat overloaded. The definition of observechoice can be obtained (i.e.7 ex- 
tracted) from the definition of observex by instantiating the subscript X with the value 
choice. Similarly, the definition of observet,,,,i,,t can be obtained by instantiating the 
subscript X with the value transient.  
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f a l se  

true 

observechoice(sn, t )  
fa l se  
3a : eval(lh.4, t ,  a )  

observex(s7, t )  v observex(sF, t )  
observex(s7,  t )  V observex(s7,  t )  
m 
V observex(s l ,  t i )  where tree = t ( t i ,  t 2 ,  ..., tm)  

i=l 
m 
V observex(srL, t i )  where tree = t ( t i , t 2 ,  ..., tm)  
i= 1 
m 
V observex(s l ,  t i )  where tree = t(t1, t 2 ,  ..., tm)  
i=l 
m 
V observex(sn,  t i )  where tree = t ( t i , t2 ,  ..., tm) 
i=l 

observex ( sn ,  t )  

Figure 6: The semantics of observation 
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Note that in a non-failure based framework it is sufficient to conclude that a strategy 
has applied if at least one of its sub-strategitts applies. For example, in order to conclude 
that SI ;  sz; ...; s, applies to t ,  it is sufficient to find a single strategy si that applies to 
t .  Furthermore, transient(sn) is a strategy whose application can never be observed by 
observetrnn.FielLt but whose application can be observed by observechoice. 

4.5.3 

In TL, the application of all strategies is restricted to ground terms (Le., order 0 strategies). 
In the semantic definitions below a distinction is made between first-order strategies and 
higher-order strategies. This is done for the following reasons: 

The Semantics of Basic Strategic Combinators 

1. For n > 1, the strategy skipn will return skipn-' when applied to a tree. In contrast, 
skip' will return t when applied to t .  

2. All strategies must be homogeneous with respect to order (e.g., an order n strategy 
may not have components that are order m where m # n).  

In a higher-order framework without the transient combinator the application sn t = 
Sn-l . When n = 1 we have the degenerate case where sn-' = so = t' is a ground term. 
Introducing the transient combinator into this framework enables the application operation 
to change the value of the strategy being applied. For example, consider a first-order 
strategy s1 containing no transients. Suppose that s1 can successfully be applied to t 
yielding t'. The application t rans ien t (s ' ) t  will yield the strategy skip' as well as the 
term t' which we will denote as follows: t rans ien t (s l ) t  = ( sk ip l , t ' ) .  In general then, the 
application of a strategy sn to a term t will yield a tuple of the form (P, sn-') where S n  is 
the strategy resulting from the application and sn-' is the result of the application. 

skipn t 
i f n = 1  

((Zhs' -+ sn) ,  a ( sn ) )  

((Zhs' + S n ) ,  t )  

((Zhs' -+ sn ) ,  skipn)  

if obserwe,h,~,,(Zhs', t )  A evaZ(Zhs', t ,  a )  

if lobserve,.oice(Zhs', t )  A n = 0 

if lobservechoice(lhs', t )  A n > 0 

( sk ipn ,  sn t )  

(in, sn-l)  

if observetTansient(sn, t )  

if lobserwetransient(sn, t )  A (in, P-') = sn t 
t rans ien t (sn)  t = 

'Note that sk ip ,  the strategy which never applies, is the dual of id, the strategy which always applies. 
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t 

4.5.4 The Semantics of First-Order Generic Traversal Combinators 

The ability to control term traversal is central to strategic programming frameworks. Three 
approaches for specifying term traversals are possible: manual, fixed, and user defined. In a 
manual approach, recursive rules need to be written to account for every term constructor 
that may be encountered during the traversal. This form of traversal construction is sup- 
ported by rewriting systems in general and by ELAN[lS] in particular. A second approach 
is to provide a fixed set of generic traversals (e.g., topdown, bottomup, etc.) which can then 
be used to define various rewriting strategies. This approach has been taken in a system 
in which ASF+SDF has been extended with a fixed set of generic term traversals[4], and 
also by Tran,sformation Factories, a similar ASF+SDF based system whose purpose is to 
generate components for software renovation factories[5]. 

In the third approach, a set of primitive generic one-layer traversal conibinators are 
provided by the language from which the user may construct custom traversals. A one-layer 
traversal is a cornbinator that applies a given strategy to a subset of the immediate children 
of a term ~ and goes no further. One-layer traversals can be used in recursive equations to 
describe a number of useful strategies capable of traversing entire term structures as well as 
selective portions of terms. This is the approach taken by Stratego[S4], the Sk calculus[22], 
and TL. 

Recall that the application of a TL strategy to a term can change both the term as 
well as the strategy. This raises some questions regarding how strategies should be applied 
within traversals. Two possibilities come to mind: threuding and broadcasting. In threading, 
when a strategy s is applied to a term t ,  the resulting strategy s' becomes the strategy that 
is applied to the next term encountered in the traversal, and so on. Threading creates a 
need to distinguish between left-to-right and right-to-left traversals. Broadcasting on the 
other hand, involves making copies of the strategy under consideration and is insensitive 
to left/right traversal orientation. As a result, TL provides three basic first-order generic 
combinators: all-thread-left, all-thread-right, and all-broadcast. As the name suggests these 
primitives are variations of the generic traversal combinator all which arises in various guises 
in the literature. Informally stated, all (s) t  applies the strategy s to all of the immediate 
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subterrns (i.e., the children) of t .  In Stratego, this combinator is called all. 
calculus it is denoted by the symbol 0. 

In the Sk 

... 

and 
tree’ = t ( t i ,  tb, ..., t’,) 

all-thread-right(sA) tree def (sh,, tree‘) 
where tree = t(t1, t 2 ,  ..., t,) 
and (si, t’,) = so 1 t ,  

(S;,t’,-l) = 3: tm-1 

(.&,ti) = S m - 1  tl 

... 
1 

and 
tree‘ = t( t: , t i ,  ..., t’,) 

ai I -broadcast ( s ) tree (s1, tree’) 
where tree = t(t1, t 2 ,  ..., t,) 
and ( s i , t i )  = s1 tl 

(Si&) = s1 t 2  

(S , , tA )  1 = s1 t ,  
... 

and 
tree’ = t ( t i ,  tk7 ..., t i )  

4.5.5 The Semantics of Higher-Order Generic Traversal Combinators 

The higher-order generic one-layer traversals described here are unique to TL. They are 
similar but not identical to hylomorphisms over rose2 trees found in functional program- 
ming frameworks [26] [27]. The primary difference between our higher-order traversals and 
hylomorphisms is that in our framework, the strategy sp is itself changing as it is being 
applied to the term ti while in a hylomorphism sp would need to remain the same. 

‘A rose tree is a multiway branching tree 
-L 
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. 

all-thread-right(s;, r ,  e) tree 

all-broadcast(sn, T ,  e) tree 

dzf (s;n, F l )  

where tree = t(t1, t 2 ,  ..., tm)  
and (s;,s:-') = sz tl 

(s;,s;-I) 1 s; t 2  

( S Z ,  .&-I) = s$-l t ,  
... 

and 

where 69 is a left-associative binary infix combinator 
such as ; or 1 and T is a strategy such as transient.  

$ - l -  - T ( s 7 - 1 )  e T ( s ; - 1 )  CEl ...e +;-I) 

(SYn, g - 1 )  

where tree = t(t1, t 2 ,  ..., tm)  
arid (s; ,  sy-') = sz  t ,  

(s;,s;-l) = s; tm-l 

(sk,s&-l) = s;n-l tl 
... 

and 

where CEl is a right-associative binary infix combinator 
such as ; or I and T is a strategy such as transient.  

sn-l - - r(sy-1) e +;-I) e ...e r(s",--1) 

def 
= ( sn , sn- l )  

s ' L - l  (-, 2 ) = sn t 2  

(-, s;,l) = sn t ,  

where tree = t(t1, t 2 ,  ..., t,) 
and (-,s:-') = sn tl 

... 

and 

where 69 is a binary infix cornbinator such as ; or I 
and T is a strategy. 

sn-1 = .(.:-I) 69 T ( . p )  e ...e +;-1) 

4.5.6 Coda 

In the definitions above, we have glossed over some low-level details regarding type con- 
sistency. For example, the equations described in Section 4.2 niay involve expressions in 
which strategies are applied to terms. Given the above definitions, a strategy application, 
will yield the atypical tuple rather than a single value which is standard in strategic frame- 
works. This problem can be resolved by extending the definition of match equations so they 
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def can handle tuples. For example, e << (s, t )  = e << t .  In practice, these issues do not pose a 
problem. Furthermore, the details are uninteresting with respect to the theme of this paper 
and are therefore not discussed in further detail. 

We now make some basic observations in the form of theorems. The purpose of these 
theorems is to help the reader gain a better understanding of TL by explicitly articulating 
some basic properties many of which the reader may already be aware. We leave the proofs 
of these theorems to the reader. 

Theorem 1 skip" I sn = sn 

Theorem 2 S" I skipn = sn 

Theorem 3 skip" ; S" = sn 

Theorem 4 S" ; skipn = S" 

Theorem 5 transient(skipn) = skipn 

Theorem 6 For any strategy s1 that is free from transients: 

alZ-thread_left(sl) = all -thread-right(s') = alZ-broadcast(sl) 

Theorem 7 For any strategy sn that i s  free from transients: 

all-thread-left(sn, T ,  e) = all-thread-right(sn, 7, e) = all-broadcast(sn, T ,  e) 

4.5.7 

TL makes a distinction between non-recursive and recursive strategy definitions. The colon 
and equality symbols are used as the mechanisms for defining non-recursive and recursive 
strategies respectively. A partial BNF syntax for strategy definitions is given in Figure 
4.5.7. 

In TL, non-recursive strategy definitions are called labeled strategies. Due to their non- 
recursive nature, labeled strategies are little more than syntactic sugar when seen from 
a semantic perspective. They provide a mechanism for abstracting strategy expressions. 
Their purpose is to increase readability, and they can be statically removed through a 
fixed number of unfold operations. Because of this, labeled strategies do not enhance the 
capabilities of a system with respect to the distributed data problem as defined in Section 
1. 

On the other hand, combining parameter passing with recursive definitions enhances the 
capabilities of a system with respect to the distributed data problem. Recursive strategies 
have the ability to transport values to points arbitrarily deep within a term structure. 

When writing TL programs, we discourage the use of recursive definitions involving 
parameters except for defining strategies that are completely generic (e.g., topdown, bot- 
tomup, etc.). 

Non-recursive and Recursive Strategy Definitions 

34 



.._ . .- nonrecursive-def I recursive-def definition 

non-recursive-def ::= id : expression 
I id ( arg-list ) : expression 

..- ..- id = body recursive-def 
1 id ( arg-list ) = body 

.._ body ..- id 
1 expression 
I X t. let bindinglist in strategy-application end 

bindinglist .._ ..- binding binding list I binding 

binding .._ ..- ( id , id ) = strategy-application 
I definition 

expression ..- . .- strategy-application 1 strategy-expression 

strategy-application ::= the application of a strategy to a term 
stratem-expression ::= defined in Section 4.4 

Figure 7: A partial BNF for strategy definitions 
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4.5.8 Some Generic Recursive TL Strategies 

Strategy Comment 
- - S The identity strategy. 

tdZ-thread(sh) = x t .  let, A complete threaded 
top-down left-to-right 

Z(4  

1 
( S i l t ' )  = so t 

traversal 

end 
tdr-thread(s') = x t .  let A complete threaded 

top-down right-to-left ( S i l t ' )  = so 1 t 

aZZ_threadright(tdr-tthread(s:))) t' 
in traversal 

end 
td-broadcust(s') = X t .  let A complete broadcast 

( s i , t ' )  = so 1 t top-down traversal 
in 

aZl_broadcast (td_broadcas t (si ) ) t' 
end 

bu~_thread(sl)  = x t .  let A complete threaded 
(st, t') = aZZ_thread_Zeft(buZ-threud(~l)) t bottom-up left-to-right 

in traversal 
si t' 

end 
bur-thread(sl) = x t. let A complete threaded 

(si, t') = aZl_threadright(bur_tibread(sl)) t bottom-up left-to-right 
in 

end 
s: t' 

traversal 
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4.5.9 Some Generic Higher-Order Strategies in TL 

Strategy Comment 
all-seq_tdl(st) = Construct a sequential 

X t .  let composition of the result 
of applying sz in accordance 

left- to-right traversal 

(s7,sn-l) = s t  t 

Sn-l ; (al l_thread_lef t (al l_seq_tdl( .s~) ,  I ,  ; ) t )  
in with a threaded top-down 

end 

all_seq_bul(s2;.) = Construct a sequentid 
X t .  let composition of the result 

of applying so" in accordance 
with a threaded bottom-up 

(s:, s7-l) = all_thread_left(all_seq_bul(s~), I ,  ;) t 
(s;,s;-l) = s;" t 

in 
p - 1  . Sn-l 

1 1 2  

left-to-right traversal 

end 
all_cond_tdl(sn) = Construct a conditional 

X t .  let composition of s$ in 
accordance with a 

left-to-right traversal 

(s7,sn-l) = s; t 

sn-' I (all_thread_left(uZl_cond_tdl(sn), I ,  I )  t )  
in threaded top-down 

end 

all_cond_bul(sn) = Construct a conditional 
X t .  let composition of s t  in 

accordance with a 
threaded bot tom-up 

(s?, s;"-l) = all_thread_left(all~ccond_bul (s;), I ,  I) t 
(s;,s;-l) = s? t 

in left-to-right traversal 

end 
s;"-1 I s;-1 
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4.5.10 A TL Implementation of Some Standard First-Order Generic Strategies 

Strategy Comment k 

T D ( S~ ) : tdl-thread(sl) Will apply s1  in a top-down left-to-right fashion 
provided s1 is transient-free (i.e., contains 
no nested transients) 

- 
B U ( s l )  : bul-thread(s') Will apply s1 in a bottom-up left-to-right fashion 

provided s1 is transient-free 
onceTD(s l )  : T D ( t r u n s i e n t ( s l ) )  Will apply s1 at most one time somewhere in a term 

provided s1 is transient-free 
oriceTD( s') : B U (  transient(  sl)) Will apply s1 at most one time somewhere in a term 

provided s1 is transient-free 
stopTD ( sl) : td-broadcast ( transient( s1 )) Will apply s1 at most one time on any path from 

a subterm to its root. E.g., if s1 applies to t then 
s1 did not apply to any ancestor of t  

5 Examples: Set and Sequence Operations 

Here, we consider three abstract strategies, unions, intersect-s, and z ips  that can be applied 
to sets, sequences, and multi-sets. Our experiences lead us to believe that the unions, 
intersects, and z ips  strategies described below lie at the core of a number of common 
program transforrnation objectives. Variations of the unions strategy can be used as the 
basis for constant propagation, variable renaming, Java constant pool normalization, as well 
as field distribution and method method table construction in Java classfiles. 

In the grammar shown in Figure 5 the meta-symbols of the granimar are ::=, (), and I .  
The term () is used to denote the epsilon production, domain variables are enclosed in pointy 
brackets and terminal symbols are quoted. Figure 5 defines some strategies that perform 
simple operations such as adding an element to an empty list of elements, etc. Figure 5 
presents higher-order strategies defining the operations unions, intersection-s, and zips. 
These strategies when properly instantiated, will perform their corresponding set/sequence 
operations. Figure 5 defines strategies that properly instantiate strategies from Figure 5 
and then apply the resulting instantiation to a term. 

5.1 Union 

The union-s strategy is a higher-order strategy that when given an element as described 
by the pattern elements[[ element1 elements1 I] will produce a transient strategy con- 
sisting of the conditional composition of the strategy keep(element1) with the strategy 
add(element1). The expression all-cond-tdl union-s set1 is used to traverse set1 and pro- 

for every element in the set. For example, suppose set1 = {a1,22,23,24}. The result of 
all-cond-tdl union-s set1 will be: 

Y 

duce a sequential composition consisting of an appropriately instantiated transient strategy - 
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set-expr 
set ::= “{” elenierits “}” 

elements 
element 

set-op 

::= set set-op set I set 

::= elenient elements I () 
::= <id> I ‘,(” <id> <id> “)” 

::= “union” I “intersect” I “zip” 

Figure 8: A BNF describing set/sequence expressions 

keep (element 1 ) 
add(element1) : elements[[ I ]  + ele7ner~t.~[[elementl]] 
remove : elements[[elementl elements2]] + elements2 
tuple (e lementl )  : elements[[elementz eZements211 + elements[[(elementl  element2) elements211 

: elements [ [elemerrtl elenients2]] -+ elements [ [elementl el ements2]] 

Figure 9: Some basic abstractions 

union-s : elements[[ element1 elements1 I ]  + transient(keep(e1ement~) I add(element1)) 
intersect-s : elements[[ element1 elements1 I ]  -+ transient(keep(e1ernentl)) 
z ip3  : elements[[ element1 elements1 I ]  + transient(tuple(element1)) 

Figure 10: Second-order strategies realizing set/sequence operations 

make-union : set-expr[[setl union set211 
-+ TD(all-cond-td1 union-s se t l )  set2 

make-intersect : set-expr [[set1 intersect set211 
+ T D (  (all-cond-tdl i n t e r s e c t s  se t l )  Iremove) set2 

make-zip : set-ezpr[[setl zip set211 
-+ TD(all-cond-td1 zip-s s e t l )  set2 

Figure 11: Instantiation and application of second-order strategies to terms 
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transient (eZenzents[[zI elements211 + elements[[zl elements211 
I 
transient (elements[[z2 elements2]] + elements[[z2 elements211 
I 

eZemen,ts[[ ]] + eZernents[[zl]]) 

elements[[ ]] -+ elements[[z2]]) 

transient(elen~ents[[s3 elements211 -+ eZements[[z3 eZements2]] 1 elements[[ I]  -+ eZements[[z3]]) 
I 
transient(elements[[z4 elements211 + eZernents[[z4 elements211 I elements[[ I] + elernents[[z4]]) 

Let s denote this first-order strategy. The strategy expression T D  s set2 now applies 
s to every element in set2. Whenever a duplicate element is encountered a strategy/rule 
of the form elements[[elementl elements211 + elements[[elementl elements211 will apply 
after which the transient attribute will cause the strategy/rule to be removed from s. For 
example, suppose set2 = {yl ,  22,23, y2). The application of s to the first element in set2 
will leave s unchanged. However, after the application of s to the second element in set2, s 
is changed to s’ and has the value: 

transient(elements[[zl elements;?]] -+ elernents[[zl elements2]] I elements[[ I] -+ eZements[[zl]]) 
I 
transient(elements[[z3 elernents2]] -+ elements[[z3 elernents2]] 
I 
transient (eZements[[z4 elementsn]] -+ elernents[[z4 elements211 

elements[[ I] -+ eZements[[z3]]) 

elements[[ ]] -+ elernents[[s4]]) 

After the application of s’ to the third element in set2, s‘ will be changed to s” and 
have the value: 

transient(elements[[zl elements211 -+ elements[[zl elements211 I elements[[ I] + eZements[[zl]]) 
I 
transient(elements[[z4 elements211 -+ elements[[zil elements211 I elements[[ I] -+ elements[[z4]]) 

After the last element of set2 has been traversed, the add(element1) strategy of all the 
remaning transients will cause the elements zl and s 4  to be added to the set after which 
they too will be removed from the strategy. The resulting set is the union of set1 and set2 
which is: 

5.2 Intersection 

The intersect-s strategy is a higher-order strategy that when given an element as described 
by the pattern elements[[ element1 elements1 I] will produce a transient instance of the 
strategy keep(element1). The expression all-cond-tdl intersect-s set1 is used to traverse 
set1 and produce a conditional composition consisting of an appropriately instantiated 
transient strategy for every element in the set. To this resulting strategy the remove 
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strategy is then conditionally added, so the expression becomes (all-cond-tdl intersect-s 
set1)lrernove. Let us examine what strategy gets created if set1 = { z l , z 2 , ~ 3 ~ x 4 } .  The 
result of (all-cond-tdl intersect-s setl) \remove will be: 

transient(elentents[[zl elements;?]] + elemerLts[[zl elements211 ) 
I 
transient (elements[[d elements;?]] -+ elements[ [ 2 2  elements;?]] ) 
I 
transient (elements[[x3 elernents2]] + elemersts[[x3 elernents;?]] ) 
I 
transient (elements[[24 elements;?]] + elements[[x4 elements;?]] ) 
I 
remove 

Notice that the remove is not transient and is not created as a result of a higher-order 
application. In particular, element1 in remove remains an uriinstantiated schema variable. 
Let s denote the first-order strategy shown above. The strategy expression T D  s set2 now 
applies s to every elemcnt in set2. Whenever a duplicate element is encountered a strat- 
egy/rule of the form eZements[[eleme?zt1 elements211 + elements[[elementl elements211 
will apply after which the transient attribute will cause the strategy/rule to be removed 
from s. Furthermore, the conditional composition cornbinator will only enable remove to 
be executed if all of the prior transients fail. The failure of all transients implies that the 
element under consideration is not part of the intersection and should therefore be removed. 
For example, suppose set2 = (y l ,x2 ,~3 ,y2} .  The application of s to the first element in 
set2 will leave s unchanged, but will cause y l  to be removed from set;?. We will use set; to 
denote the new value of set2. The application of s to the second element in set; will cause 
.s to be changed but will leave set; unchanged. The new value of s which we denote s' will 
have the value: 

transient(elements[[xl elements;?]] -+ elements[[zl elements211 ) 
I 
transient (elements[[23 elements;?]] + elements[ [23 elements;?]] ) 
I 
transient (elements[[x4 elements211 -+ elements [[24 elements;?]] ) 
I 
remove 

After the application of SI to the third element in set;, s' will again be changed to s'' 
and have the value: 

transient(elel-nerLts[[zl elements;?]] + elements[[xl elementsz]] ) 
I 
transient (elements[ [:c4 elements;?]] + elements[[x4 elerr~ents;?]] ) 
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I 
remoue 

This strategy when applied to the element y2 will cause it to be removed from set;. 
The resulting set is the intersection of set1 and set:! which is: 

5.3 Zip 

The zip-s strategy is a higher-order strategy that when given an element as described by the 
pattern elements[[ element1 elements1 I ]  will produce a transient instance of the strategy 
tuple(element1). The expression all-cond-tdl zip-s set1 is used to traverse set1 and produce 
a conditional composition consisting of an appropriately instantiated transient strategy for 
every element in se t l .  Let us examine what strategy gets created if set1 = { z l ,  22 ,23 ,24} .  
The result of all-cond-tdl intersect-s set1 will be: 

transient(elements[[eZement2 elements2]] -+ e lemen t s [ [ ( z l  elementz) elementsz]] ) 
I 
transient(elements[[element:! elements:!]] -+ e lements[[ (z2  elements) elements211 ) 
I 
transient(eZements[[eZementz elements:!]] -+ elernents[[(z3 elementz) elements211 ) 
I 
transient (elements[[elementz elements:!]] + e l e n ~ e n t s [ [ ( z 4  element:!) elements;?]] ) 

Let s denote the first-order strategy shown above. The strategy T D  s set2 now applies 
s to every element in seta. Whenever an element is encountered the first transient strategy 
will apply after which the transient attribute will cause the strategy to be removed from s. 
For example, suppose set2 = { y l ,  y2, y3, y4) .  The application of s to the first element in 
set2 will yield the tuple (z1 y l ) .  Let st denote the new value of s that results. The strategy 
st now contains the transients: 

transient(elements[[element:! elements2]] + e lements[[ (z2  elementz) elements211 ) 
I 
transient (eiements[[element:! eZements2]] -+ e lements[[ (z3  elementn) elements2]] ) 
I 
transient (elements[[elementz elements211 -+ e l e m e n t s [ [ ( d  elementn) elements:!]] ) 

The application of s’ to the next element in set2 will yield the tuple (22  y2 ) ,  after which 
the applied transient is again removed. This continues on producing the final set: 
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6 A Classloader for Java 

At Sandia National Laboratories, a subset of the Java Virtual Machine (JVM) has been 
developed in hardware for use in high-consequence embedded applications. The implemen- 
tation is called the Sandia Secure Processor (SSP)[25]. An application program for the SSP 
is called a ROM irnaye and consists of a collection of classfilelike structures that have been 
stored on a read-only memory. The SSP is a closed system in the sense that the execution 
of an application program may only access the structures in the ROM (e.g., no dynamic 
loading of classfiles across a network). The closed nature of the SSP’s execution environ- 
ment enables the classloading activities of the JVM to be performed statically. Under these 
conditions, the functionality of the classloader is well-suited to a strategic implementation. 

In the discussion that follows, we assume that an application consists of one or more 
Java classfiles and that Java classfiles have the structure defined in [24] subject to some 
minor restructuring to facilitate strategic objectives. For the purposes of this discussion the 
iniportant things to know about classfiles is that they contain: 

1. A class entry whose value denotes the name of the class. 

2. A constant pool whose entries contain various forms of data such as a full description 
of the fields that are explicitly used within the class. 

3.  A fields section containing all of the fields, both static and instance, declared within 
the class. 

4. A methods section containing all of the methods explicitly defined in the class. 

Activities that can be performed statically include (1) constant pool normalizntion ~ 

which consists of removing indirection from constant pool entries (2) field distribution - 
which consists of distributing field address information across all constant pool entries 
within an application, and (3) method table construction ~ which concerns itself with the 
construction of method tables subject to a set of constraints (see Section 6.3). 

The results presented here have all been implemented in a system called HATS which 
is described in Section 7. 

6.1 Constant Pool Normalization 

In this section we will look at  how dynamic strategies can be used to remove indirection 
from constant pool entries. This problem, which we call constant pool normalization, is a 
real-world instance of the table normalization problem presented in Section 3.1. 

Figure 6.1 gives an example in human readable form of the kind of information found 
in the constant pool of a Java classfile. In particular, the contents of a constant pool entry 
may be a utf8 (a string) or one or two indexes to other constant pool entries. For example, 
the fourth entry describes a field whose class name index can be found at  entry 2 and whose 
(field) name and type indexes can be found at  entry 3 .  Similarly, entry 2 contains an index 
to a utf8 entry whose value denotes the name of the class. 
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I Index I Original Type I Contents 

2 
3 

4 

I 1 I constant-utf8info I animal I 
constant -c las s-inf o name-index = I 
constantname-and-type-inf o name-index = 5 

constant fieldref -inf o classindex = 2 
descriptor-index = 6 

name-and-type-index = 3 
5 
6 

constant-utf8-inf o X 

constant-utf 8-inf o I 

Figure 12: Uriresolved constant pool entries 

Unresolved Partially R,esolved Resolved 
class-index = 2 -+ name-index = I + animal 
name-and-type-index = 3 -+ name-index = 5 + x  

descriptor-index = 6 -+ I 

Figure 13: Index resolution sequence 

A resolution step of a constant pool entry is performed by replacing an index to an 
entry with the data contained in the entry. Resolution steps should be repeated until 
all indirection has been removed, at which time the constant pool is mrmalized. The 
normalization of entry 4 in Figure 6.1 is shown in Figure 6.1. 

After constant pool normalization, utf8 entries are no longer needed and can be removed 
yielding a reduced constant pool consisting only of relevant entries. Figure 6.1 shows the 
normalized relevant constant pool entries for the constant pool given in Figure 6.1. 

Our approach to solving the index resolution problem consists of a combination of 
language redesign together with supporting canonical forms. Shown in Figure 6.1 is a 
redesigned grammar fragment describing the structure of the constant pool within a Java 
classfile. The naming conventions have been taken from the JVM specification[24] to the 
extent possible. The primary grammar redesign has been to group constant pool index and 
utf8 entries under the nonterminal symbol data. The reason for this is that we want to 
minimize the number of strategies needed to rewrite indexes to utf8’s. 

Constant pool normadization can be achieved by the exhaustive application of proper 

I Original Index I Original TvDe I Contents 
1 2  I constant-class-info I animal I 
1 4  I constant-fieldref-info I animal x I I 

Figure 14: Normalized relevant constant pool entries 
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constant-pool ::= cpinfolist 
zpinfolist 
zpinfo 
wcess 

::= cpinfo cpinfolist I () 
::= [ access 3 base-entry 
::= [ offset ] index 

base-entry .._ ..- constant-classinfo 
I constant-utf8info 
I constant-fieldrefinfo 
I constant-methodrefinfo 
I constant -name-and-type-info 
I constant integer-info 

constant-name-andhypeinfo ::= name descriptor 
constant -fieldrefinfo ::= class name-and-type 
constant -met hodrefinfo : : = class name-and-type 
constant -classinfo ..- name 
constant -integer-info ::= bytes 
constant -utf8info ::= utf8 

.._ 

class 
name 
name-and-type 
descriptor 

.._ ..- name 
::= data 
::= data 
::= data 

data ::= index 1 utf8 I name cdscriptor 

Figure 15: A redesigned grammar fragment for the Java classfile structure 
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resolve-index( index1 , ~ t f 8 1 )  : data[[indexl]]  -+ data[[utf81]] 
resolve-nt-index( indexl,utf8l,utf82) : name-and-type[[indez1]] 

-+ narne-and-type[[utf8 1 utf82]] 

~~~ ~ ~ ~ 

Figure 16: Second-order strategies capturing resolution steps 

resolve-data : cp_info[[index1 constant-vtf8-info~]] --+ resolve-indez(indexl ,utf8 1) 
if constant-utf8-info1 >> constant_utf8_info[[utf8 111 

resolve-nt : cp-info[[indexl constant-name-and-type-infol]] 
--+ resolve-nt-index(indezl ,utf81,utf82) 
if constant-name-and- type-info1 >> constant-name-and-type-info [ [utfs 1 utf8q]] 

resolve : ClassFileo 
-+ T D  (all xond-tdl (resol ve-data; resolve-nt) ClassFil eo) ClassFil  eo 

Figure 17: Strategies for instantiating and applying resolution strategies 

instantiations of the two strategies shown in Figure 6.1: 
The strategy resolve-index describes how a data index can be rewritten to a utf8, and 

the strategy resolve-nt-index describes how a name-and-type index can be rewritten to a 
pair of utf8 elements. The grammar in Figure 6.1 has been redesigned in such a way that 
these resolutions are the only ones that need to be considered. The dynamic strategies used 
to instantiate resolve-index and resolve-nt-index as well as normalize the constant pool 
are given in Figure 6.1. 

For a more detailed discussion of both the SSP project and transformation in this setting 
see [39]. 

6.2 Field Distribution 

In this section we look at the problem of distributing field offset information among the 
constant pool entries in an application. We refer to this activity as field distribution. Field 
distribution assumes that offset and absolute addresses have been computed for all fields 
in the application. By this we mean that for all classes in the application, every instance 
field in every fields section has been annotated with an appropriate offset address and every 
static field has been annotated with an appropriate absolute address. Though this article 
does not discuss the strategies needed to compute such addresses, we would like to mention 
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4 

* 

application : : = classfile I classfile application 

constant-pool ::= “{” cp-list “}” 
classfile ..- ..- “{” class constant-pool fieldsection “}” 

cplist ..- ..- cpentry [ cp-list ] 
cp-entry ..- ..- class field type I offset type 

ficldsection ::= “{” fieldlist ”}” 
fieldlist ::= f-entry [ fieldlist ] 
f-ent ry 
class ..- id 
field ..- id 
offset ..- HEX 
id ..- ident 
type 

.._ ..- field offset 

..- 

.._ 

..- 

..- 

..- ..- “int” I “long” I “byte” 

Figure 18: A simplified Java grammar 

that they involve transient strategies. 
In our discussion here, we restrict the field distribution problem to instance fields (i.e., 

fields having offset addresses). The strategic objective at, this point is to distribute field offset 
information to all appropriate constant pool entries within the application. For example, 
let animal z I denote an entry occurring in the normalized relevant constant pools of one 
or more classes in the application and suppose that :0004 is the offset address that has been 
calculated for the field animal z. Field distribution would require the following replacement 

animal z I + :0004 I 

to be applied to all constant pool entries having the value animal z I .  Note that a constant 
pool entry such as animal z I need not be restricted to the class animal in which the field 
z is declared, but can occur almost anywhere within the class hierarchy of the application. 

Though we have implemented a solution to full field distribution problem, for the sake 
of brevity, in this article we consider the field distribution problem in the context of the 
simplified Java grammar given in Figure 6.2. 

Given this grammar, the an application consisting of classfiles for the classes A, B, and 
C could be expressed as follows: 

{ A { C x int B y byte A z long } { x:0004 y:O00C z:0014 } } 
{ B { A y long B y byte C z int } { x:0004 y:0005 z:0006 } } 
{ C { A x long C y int B z byte } { x:0004 y:0008 z:OOOC } } 

Here { A { C x int B y byte A z long } { x:0004 y:OOOC z:0014 } } denotes the class 
A whose constant pool contains the fields C x int, B y byte, and A z long. The class A 
declares the fields x, y, and z whose offsets are :0004, :00OC, and :0014 respectively. The 
remaining entries in the example can be described in a similar fashion. 
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Field( class 1 ) : f-entry[[fieldl  oflsetl]] 
+ cp-entry[[classl f ie ld1 typel]]  -+ cp-entry[[o#setl type111 

Class : classfile[[{classl constantpool1 field-sectionl}]] 
+ all-cond-tdl (Field classl)  field-section1 

Field -Di stri but ion : application 1 -+ T D ( a1 1 -cond-t dl Class application 1 ) application 1 

Figure 19: A higher-order strategic solution to the field distribution problem 

The result after field distribution would be: 

{ A { :0004 int :0005 byte :0014 long } { x:0004 y:OOOC z:0014 } } 
{ B { :OOOC long :0005 byte :OOOC int } { x:0004 y:0005 z:0006 } } 
{ C { :0004 long :0008 int :0006 byte } { x:0004 y:0008 z:OOOC } } 

Field distribution can be realized by the strategies shown in Figure 6.2: 
Let us take a closer look at how the Field-Distribution strategy shown in Figure 6.2 

solves the field distribution problem. Recall that according to the BNF in Figure 6.2, an 
application consists of a list of classfiles and each classfile in turn contains a field-section 
consisting of a list of f-entry elements. 

Our high-level strategic design is as follows: From a top-down perspective, we first 
create an instance of the Class strategy for every classfile in the application. The strategic 
expression all-cond-tdl Class application1 accomplishes this and yields a strategy of the 
form: 

Class1 @ Class:! @ ... @ Class ,  

Within each Classi instance we need to produce an instance of the Field strategy for every 
f-entry in the field-section. The strategic expression all-cond-tdl (Field classi) field-sectioni 
accomplishes this and yields a strategy of the form: 

Fieldi.1 @ Fieldi.2 @ ... @ Fie&, 

The resulting strategy contains the inforniation needed to resolve every cp-entry in application1 . 
A full traversal that applies this strategy to the term application1 solves the field distribution 
problem. 

6.3 

The strategies given for constant pool normalization and field distribution do not involve 
the transient combinator. In practice however, the transient combinator is widely used. 

Method Table Construction for Java Classfile Hierarchies 
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Within tlie context of the classloader problem, method table construction is an example of 

present a sketch of a strategic approach for method table construction. 
When implementing a Java Virtual Machine (JVM), method tables are often used as 

a mechanism for indirectly providing access to the methods associated with an object [32]. 
Each classfile has one method table whose entries contain information about particular 
methods such as tlie address of the first bytecode of a method and the address of the constant 
pool corresponding to a method. In order to provide correct information at runtime, it is 
sufficient for method tables within a class hierarchy to satisfy the properties given below. 

Let s, denote the signature (i.e., the name and descriptor) of method m. Let e[C, s,] 
denote a method table entry corresponding to a method having a signature s,  that is 
defined in class C. Let Tc denote the method table for the class C, and let 4 denote a 
reflexive, transitive sub-type relationship between classes as defined by the Java extends 
directive. For example, given two classes B and C, if C 3 B then either C = B or C is a 
descendent of B within the inheritance hierarchy. 

an activity that involves the use of transient strategies. For the sake of brevity, we only 

1. For every inherited method m that is not redefined in C there must be a corresponding 
entry of the form e[B, s,] E Tc where the class B denotes most recent ancestor of C 
where m is defined. 

2. For every method m (re)defined in a class C there must be a corresponding entry 
e[C, sm3 E Tc. 

3. The method table for the class C may only contain entries corresponding to inherited 
methods or methods that have been defined in C. 

4. 'd&,&, s ,  : 3B, C, i ,  j : To, [z] = e[B ,  s,] A TDp[ j ]  = e[C, s,] A D1 3 Dz + z = j .  
That is, within an inlieritance hierarchy table entries corresponding to the signature 
s, must reside at the same location (index) in all tables containing such an entry. For 
example, if information for the method foo resides at  the second entry of a method 
table, then all classes inheriting or redefining foo must also have tlie information for 
foo as the second entry in their method tables. 

The properties above permit method tables to be constructed in a concatenated fashion 
provided that entries associated with redefined methods destructively overwrite the corre- 
sponding inherited method table entries (e.g., the method table entry for the new definition 
of foo overwrites the method table entry for the old definition foo).  A variation of the 
union-s strategy can be employed to construct method tables adhering to the given consis- 
tency properties. One simply needs to change the keep strategy to a replace strategy that 
overwrites older method information with more recent method information. Using replace 
one now treats the method table of the parent class as a set, and takes the union of that 
set with the set of methods declared in the child class. Notice that all new methods (those 
that do not overwrite inherited methods) declared in the child class will be placed at the 
end of the method table, which is exactly how method tables should be constructed. 
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7 HATS: A Restricted Implementation of TL 

HATS[37] [38] is an integrated development environment (IDE) for strategic programming in 
a restricted dialect of TL. The IDE consists of an interface written in Java and an execution 
engine written in ML. The interface supports file management, provides specialized editors 
for various file types including an editor that highlights T L  keywords and terms. The 
interface also supports the graphical display of term structures. The execution engine 
consists of t h e e  components: a parser, an interpreter, and an abstract prettyprinter. 

A domain of discourse can be defined by a context-free grammar. The HATS parser 
supports precedence and associativity of operators and grammar productions. It allows the 
user to describe a context-free grammars using an extended-BNF notation. The parser is 
an LR parser with the capability to do backtracking as needed in order to resolve local am- 
biguities. One can think of such a parser as an LR(K) parser for arbitrary K. Backtracking 
brings the parser’s capability close to that of a scannerless generalized LR parser[31] [6]. 
TL programs are executed by an interpreter written in ML and the output can be format- 
ted using a powerful variation of abstract prettyprinting[7][30]. HATS runs on Windows 
NT/2000/XP and Unix-based platforms and is freely available at: 

h t tp://f acul ty . ist. uno ma h a. edu/w in t e r/ha ts- uno/HA TS WEB/ind ex. h t ml 

The strategic language supported by HATS is a restriction of T L  because (1) the com- 
binators for sub-term traversals are not available to the programmer, (2) the definition of 
recursive user-defined strategies is not supported, and (3) higher-order combinators such as 
all-thread-left, etc. are not supported in a fully generalized fashion. At present the pro- 
grammer is provided with a fixed set of generic first-order as well as higher-order traversals. 
Figure 7 shows some of the strategic constructs supported in HATS as well as their TL 
counterparts. 

All of the examples discussed in this article have been implemented in HATS. 

8 Related Work 

8.1 Stratego 

Stratego has two constructs related to the higher-order strategies presented in the paper: 
contextual rules and scoped dynamic rewrite rules. 

In [35], contextual rules are used to distribute data within a term structure. Contextual 
rules can be seen as a first-order cousin of the higher-order dynamic rules presented in 
this paper. In a contextual rule one constructs a term in which semantically related data is 
enclosed within square brackets. Operationally, a nested traversal is employed to search for a 
set of terms satisfying the contextual rule. Contextual rules work well when their evaluation 
enables incremental progress to be made with respect to the overall strategic objective. That 
is, when each new evaluation of the contextual rule yeilds the next semantically related set 
of terms. In such a setting, the evaluation of the contextual rule inherently implements a 
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HATS Construct TL Equivalent 
transient (s“) - r transierit s“ 

s’;.; .s?j sy; s; - 

S;llSY = syls; 

- - 

once-thread(pre-orderAeft, t ,  .s) E tdl-thread s t 
once-thread(pre-orderright, t ,  s) tdr-thread s t 
once-thread(post-order_le f t ,  t ,  s )  E hul-thread s t 
once-th,read(post-order-right, t ,  s )  E bur-thread s t 
orice-broadcast(pre-order, t ,  s )  E td-broadcast s t 
eval(pre-order-left, cond, sn,  t )  = all-cond-tdl(sn,2, I)t 

eval(post-order_le f t ,  cond, sn, t )  all-cond-bul(sn, Z, I)t 

eval(pre-order-right, seq, sn, t )  all-seq-tdl ( sn ,  Z, ; )t 

Figure 20: The constructs supported in HATS 

counter of sorts. Conversely, contextual rules would not be appropriate in situations where 
the evaluation of contextiial rules could contain cycles. The transient combinator describe 
in this article also can be seen as implenieriting a counter. However, the counter is explicit 
and lifted from the term-level to the strategy-level. 

In [33], an approach to the distributed data problem is taken that is similar to what we 
have described. Here the distributed data problem is viewed from a context-free/context- 
sensitive perspective. In particular, semantic relationships between portions of a program 
are seen as representing context-sensitive relationships. Dynamic rewrite rules are developed 
as a mechanism for capturing these relationships. Dynamic rewrite rules are named rules 
that can be instantiated at runtime (i.e., dynamically) yielding a rule instance which is then 
added to the existing rulebase. Dynamic rewrite rules are placed in the “where” portion of 
another rule and thus have access to information from their surrounding context. Similar 
to our approach, the program itself is the driver behind the instantiation of rule variables. 
The lifetime of dynamic rules can be explicitly constrained in strategy definitions by the 
scoping operator { I  ... I}. 

Primary differences between our approach and the scoped dynamic rules described in 
[33] are the following: 

1. In our approach, we view the rulebase as a strategy that is created dynamically. The 
@ combinator provides the user explicit control over the structure of this strategy. 

2. The transient combinator has no direct analogy within scoped dynamic rewrite rules. 

51 



8.2 The pcalculus 

The p-calculus[8] is a rewriting framework in which the distinction between a rule and the 
term to which a rule is applied is blurred. Both the rule and the term are considered p-terms. 
This uniform treatment is reminiscent of the relationship between functions and terms in 
the A-calculus. Similar to the A-calculus, in the p-calculus there are no restrictions regarding 
variable occurrences within a term. In particular, free variables may be introduced on the 
right-hand side of a rule. In fact, the right-hand side of a rule may itself be a rule, seamlessly 
opening the door to what we have been calling higher-order strategies. 

In the A-calculus as well as the pcalculus the unrestricted treatment of variables in 
terms gives rise to the name capture problem. In the pcalculus the problem is addressed 
through higher-order substitution which performs a-conversion when necessary. 

Binding is accomplished via matching modulo and equational theory. Two commonly 
used theories are AC and the trivial empty theory. Non-trivial theories such as AC generally 
will yield substitution sets as the result of matching. This gives rise to p-terms sets resulting 
from rule application. Such sets are different from the strategy sequences described in this 
paper in the following ways: 

1. Sets are not sequences. In particular, they leave the notion of order undefined. Ap- 
plication order is essential when dealing with non-confluent systems. 

2. While a set can be applied to a term, the semantics of set application is not compo- 
sitional (i.e., the result is another set and not an individual term). 

While it should be theoretically possible to simulate the constructs described in this 
paper within the pcalculus, the solution does not appear obvious. 

8.3 ASF+SDF 

In [4] a first-order system is built based on ASD+SDF where one can combine parameterized 
rewrite rules with a fixed set of generic traversals. The result of such a combination is a 
traversal function - which is essentially a rewrite rule annotated with an appropriated 
predefined traversal. One of the goals in [4] is to provide primitives so that the resulting 
traversal functions can be used in a type-safe manner. 

In Transformation Factories [ 5 ] ,  there are two kinds of traversal functions: transformers 
and analyzers. Analyzers may contain a combinator as a parameter and thus can be con- 
sidered higher-order. However, it appears that the purpose of combinators in an analyzer 
is to provide a reusable way of manipulating data (e.g., the addition of two data values, 
etc.). As such, the nature of these higher-order combinators is significantly different from 
the dynamics presented in TL. 

8.4 The Sk Calculus 

The Sly calculus[22] is a strongly typed cousin of system S. It is a first-order system, 
supporting a variety of combinators for generic one-layer traversal which can be recursively 
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composed to produce typed generic traversals. Fundamental to the S; calculus strategy 
extension cornbinator a which lifts a many-sorted strategy s to a generic type y. A type 
inferencing system supporting a restricted form of parametric polymorphism is developed in 
which strategies fall into one of two categories: type-preserving strategies and type-unifying 
strategies. Tuples, lists, strategy pararneterization, and the implicit binding of free variables 
in strategies by embedding them in scopes in which the variables are bound (e.g., via where 
clauses) are the primary mechanisms used for addressing the distributed data problem. 

In [22] a combinator O'(- )  is introduced where . denotes the placeholders for arguments. 
A stratgey expression of the form OsO((s) will process all the children of a term using the 
strategy s and will then compose the result using the strategy SO. This combinator could 
be defined in the framework of TL as follows: 

Oso ( s )  = all_broadcast(Z, s, S O )  where Z is the identity strategy 

The combinator O'(.) is used as the basis for defining a strategy CF which has a 
semantics can be understood in terms of the catamorphism fold.  An example is then given 
demonstrating why the fold combinator is more powerful than the O'(.) combinator. In 
spite of this, fold is not added to the S; calculus because without considerable care, such 
an addition would jeopardize its many-sorted type system. Therefore, the typing rules for 
f o l d  are not worked out. Nevertheless, the following useful type schemes are identified: 

T P  V a . a  + a (Type preservation) 
T U ( T )  = Va.a  -+ T (Type unification) 
TA(7)  VCX.(CX,T)  -+ 7 (Accumulation) 
TE(7)  E V a . ( a , ~ )  -+ (u (TP with environment passing) 
TS(7)  E V ~ . ( C X , T )  -+ ( a , ~ )  (Tp with state passing) 

The higher-order strategies of TL would most closely be characterized by the type 
scheme for TS(7 ) .  

8.5 ELAN 

ELAN [2] is a first-order rewrite system based on the pcalculus. Generic traversals are not 
supported and rule parameterization is the primary mechanism for transporting data from 
one term to another. Elan provides the operators de and dk which respectively denote don't 
care choose arid don't know choose and enables strategies to be created in which the choice 
of which strategy to apply is left unspecified. In this framework, an evaluation mechanism 
(e.g., nondeterministic choice, backtracking, normalization, etc.) can be used to bring the 
parameterized data to appropriate (sub) terms. 

8.6 Functional Strategies 

Historically, the functional and strategic programming communities have had different re- 
search interests. Within the functional community, type systems[28][29], polytpyic programming[l4], 
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morphisms[26], and monads[36] [27] are being extensively investigated. In contrast, the 
strategic community has looked deeply into (1) term structure recognition[6] [18], (2) con- 
trolling of term traversal[35], and (3) the development of a clean (i.e., generic) separation 
between generic control and rule definition[35][4]. However, as the complexity and size of 
strategic programs increases, so too does the appreciation of the benefits offered by strong 
(static) typing. As a result, an area of current research focuses on bringing strategic pro- 
gramming concepts into a functional framework3 with the result being a functionml strategy. 

The notions of functional strategies originated from the observation that cataniorphisms 
(i.e., what [26] refers to as “bananas”) such as fold b @ could be understood in strategic terms 
as performing a bottom-up term traversal on the structure of a list where the binary function 
@ of the fold could be used to realize either a type-preserving rewriting function or a type- 
unifying accumulating function. Pursuing this idea further, fold algebras were developed 
in order to extend this notion of the fold morphism to systems of datatypes beyond the 
list datatype. While the idea of a fold algebra is appealing, it suffers from issues of scale 
due to the effort required to instantiate fold definitions with datatype systems arising from 
real-world programming languages (i.e., large bananas[20]). This scale issue was addressed 
by introducing updatable algebras[20]. In a framework supporting updateable algebras, one 
begins with a base algebra capturing generic behavior. For a given datatype system, two 
base algebras of particular interest are idmup - which leaves any term unchanged and crush 
- which collapses a term into an expression consisting of a collection of functions applied to 
base elements. Given an appropriate base algebra one can define a new algebra in terms of 
an update (or sequence of updates) to the base algebra. In this setting, updates are used 
to capture specific behavior. The resulting algebra can then be fed to an appropriate fold 
function. 

Though updatable fold algebras can be used to capture generic and specific behaviors, 
the fold morphism will ultimately perform a complete traversal of the term to which it is 
applied. In a strategic framework, traversals can be controlled in a more refined fashion. 
In particular, a traversal need not recurse into the subterms of a term. In [19], algebra 
generalization is introduced as a mechanism for controlling traversal. A generalized algebra 
distinguishes the argument types from result types. Type-preserving and type-unifying 
strategies can both be expressed within the framework of a generalized algebra. 

The ideas discussed above can be further lifted into the realm of monads. Monads 
enable information to be propagated throughout the strategic computation. One piece of 
information that is interesting from a strategic perspective is the success or failure of the 
application of a strategy. Such information, together with backtracking enable monadic al- 
gebras to express the choice combinator. In [19], the core set of combinators for Stratego are 
implemented in a functional setting. Strafunski[21] is a Haskell-based system implementing 
the ideas discussed here. 

Functional strategies as described here go beyond first-order strategies in the sense that 
the application of a traversal may return a function. It would be interesting to explore 
whether crush could be used to implement the TL dynamics described in this paper as well 

31n contrast, the Sh calculus is an effort to bring strong typing into a strategic framework. 
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as transients. The basic idea would be to return an updated algebra as the result of a 
traversal rather than a function. The plumbing resulting from the application of transients 
could also be captured within a monad. 

8.7 Maude 

Maude[l2] is an equational and rewriting system based on a refined form of algebraic spec- 
ification built on top of a membership equational logic. The two fiindamerital constructs in 
Maude are the C-equation and the conditional C-equation. While conditional C-equations 
syntactically might appear similar to our conditional rewrites, their semantics is quite dif- 
ferent. In particular, an equation u = 'u belonging to a condition holds only if, under the 
given substitution o, the (irreducible) normal form of the left-hand side of the equation is 
equivalent to its right-hand side. That is, a(u)  

Within a specification, binary operations can be declared to satisfy various equational 
axioms such as associativity, commutativity, identity, and so forth. These properties are 
supported by a powerful matching algorithm which performs matching modulo equational 
theories. 

While the notions of dynamics and transients are not primitive operations in Maude, its 
reflective capabilities [9] [10][11] should easily support their implementation as well as the 
rest of the framework described in this paper. 

o ( v )  JE. 

9 Future Work 

From the theoretical perspective we are working on developing cornbinators allowing a 
more dynamic interplay between the creation of strategy instances and their application. 
At present the creation and application phases are distinct. We believe that the expressive 
power of strategies could be significantly enhanced in a framework in which creation and 
application could be interleaved. 

From the perspective of tool development, we are interested in extending HATS so that 
all the constructs of TL are supported. From the perspective of strategic programming, we 
are interested the effective use of higher-order strategies to solve real world applications in 
the area of program transformation. We are especially interested in the use of strategies be- 
yond the second order for non-confluent systems involving user-defined binary combinators 
(e.g., al l - threadr ight (s~ ,  7, e) where is user-defined). 

10 Conclusion 

The distributed data problem is characterized by the desire to be together semantically 
related terms from syntactically unrelated portions of a term. In a first-order strategic 
framework, accumulated data is frequently stored in a tuple or list and is then recursively 
distributed throughout a term structure by mechanisms such as parameterization. In this 
paper, higher-order strategies called dynam,ics are introduced as an alternate mechanism 
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for distributing data throughout term structures. Dynamic strategies have a behavior sim- 
ilar to the catarnorphisms like the fold operator found in functional frameworks, though 
hylomorphisnis perhaps most closely describe the behavior of dynamic strategies, especially 
when viewed from the perspective of non-list structures such as rose trees. A transient com- 
binator is introduced that restricts the application of strategies to which it is applied. The 
interplay between transients arid dynamics enables a variety of instances of the distributed 
data problem to be elegantly solved. 
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